A non-invasive clinical application of wave intensity analysis based on ultrahigh temporal resolution phase-contrast cardiovascular magnetic resonance

نویسندگان

  • Giovanni Biglino
  • Jennifer A Steeden
  • Catriona Baker
  • Silvia Schievano
  • Andrew M Taylor
  • Kim H Parker
  • Vivek Muthurangu
چکیده

BACKGROUND Wave intensity analysis, traditionally derived from pressure and velocity data, can be formulated using velocity and area. Flow-velocity and area can both be derived from high-resolution phase-contrast cardiovascular magnetic resonance (PC-CMR). In this study, very high temporal resolution PC-CMR data is processed using an integrated and semi-automatic technique to derive wave intensity. METHODS Wave intensity was derived in terms of area and velocity changes. These data were directly derived from PC-CMR using a breath-hold spiral sequence accelerated with sensitivity encoding (SENSE). Image processing was integrated in a plug-in for the DICOM viewer OsiriX, including calculations of wave speed and wave intensity. Ascending and descending aortic data from 15 healthy volunteers (30 ± 6 years) data were used to test the method for feasibility, and intra- and inter-observer variability. Ascending aortic data were also compared with results from 15 patients with coronary heart disease (61 ± 13 years) to assess the clinical usefulness of the method. RESULTS Rapid image acquisition (11 s breath-hold) and image processing was feasible in all volunteers. Wave speed was physiological (5.8 ± 1.3 m/s ascending aorta, 5.0 ± 0.7 m/s descending aorta) and the wave intensity pattern was consistent with traditionally formulated wave intensity. Wave speed, peak forward compression wave in early systole and peak forward expansion wave in late systole at both locations exhibited overall good intra- and inter-observer variability. Patients with coronary heart disease had higher wave speed (p <0.0001), and lower forward compression wave (p <0.0001) and forward expansion wave (p <0.0005) peaks. This difference is likely related to the older age of the patients' cohort, indicating stiffer aortas, as well as compromised ventricular function due to their underlying condition. CONCLUSION A non-invasive, semi-automated and reproducible method for performing wave intensity analysis is presented. Its application is facilitated by the use of a very high temporal resolution spiral sequence. A formulation of wave intensity based on area change has also been proposed, involving no assumptions about the cross-sectional shape of the vessel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical determination of the chemical exchange saturation transfer (CEST) contrast in molecular magnetic resonance imaging

Magnetic resonance based on molecular imaging allows tracing contrast agents thereby facilitating early diagnosis of diseases in a non-invasive fashion that enhances the soft tissue with high spatial resolution. Recently, the exchange of protons between the contrast agent and water, known as the chemical exchange saturation transfer (CEST) effect, has been measured by applying a suitable pulse ...

متن کامل

Application of Magnetic Resonance Imaging (MRI) as a safe & Application of Magnetic Resonance Imaging (MRI) as a safe & non-destructive method for monitoring of fruit & vegetable in postharvest period

To investigate and control quality, one must be able to measure quality-related attributes. Quality of produce encompasses sensory attributes, nutritive values, chemical constituents, mechanical properties, functional properties and defects. MRI has great potential for evaluating the quality of fruits and vegetables. The equipment now available is not feasible for routine quality testing. The ...

متن کامل

Feasibility of cardiovascular magnetic resonance derived coronary wave intensity analysis

BACKGROUND Wave intensity analysis (WIA) of the coronary arteries allows description of the predominant mechanisms influencing coronary flow over the cardiac cycle. The data are traditionally derived from pressure and velocity changes measured invasively in the coronary artery. Cardiovascular magnetic resonance (CMR) allows measurement of coronary velocities using phase velocity mapping and der...

متن کامل

Non-uniformity of Clinical Head, Head and Neck, and Body Coils in Magnetic Resonance Imaging (MRI)

Introduction Signal intensity uniformity in a magnetic resonance (MR) image indicates how well the MR imaging (MRI) system represents an object. One of the major sources of image non-uniformity in high-field MRI scanners is inhomogeneity of radio-frequency coil. The aim of this study was to investigate non-uniformity in head, head and neck, and body coils and compare the obtained results to det...

متن کامل

Dual-time-point FDG-PET/CT Imaging of Temporal Bone Chondroblastoma: A Report of Two Cases

Temporal bone chondroblastoma is an extremely rare benign bone tumor. We encountered two cases showing similar imaging findings on computed tomography (CT), magnetic resonance imaging (MRI), and dual-time-point 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT. In both cases, CT images revealed temporal bone defects and sclerotic changes around the tumor. Most parts of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2012